Deriving the central limit theorem from the de Moivre–Laplace theorem
نویسندگان
چکیده
The de Moivre–Laplace theorem is a special case of the central limit for Bernoulli random variables, and can be proved by direct computation. We deduce any variable with finite variance from theorem. Our proof does not use advanced notions such as characteristic functions, Brownian motion, or stopping times.
منابع مشابه
The Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملCentral Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملThe Martingale Central Limit Theorem
One of the most useful generalizations of the central limit theorem is the martingale central limit theorem of Paul Lévy. Lévy was in part inspired by Lindeberg’s treatment of the central limit theorem for sums of independent – but not necessarily identically distributed – random variables. Lindeberg formulated what, in retrospect, is the right hypothesis, now known as the Lindeberg condition,1...
متن کاملThe Lindeberg central limit theorem
Theorem 1. If μ ∈P(R) has finite kth moment, k ≥ 0, then, writing φ = μ̃: 1. φ ∈ C(R). 2. φ(v) = (i) ∫ R x edμ(x). 3. φ is uniformly continuous. 4. |φ(v)| ≤ ∫ R |x| dμ(x). 1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., p. 515, Theorem 15.15; http://individual.utoronto.ca/ jordanbell/notes/narrow.pdf 2Onno van Gaans, Probability measu...
متن کاملCentral Limit Theorem Forthe
The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater (1984). The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of diierential operators, introduced and analyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2022
ISSN: ['1879-2103', '0167-7152']
DOI: https://doi.org/10.1016/j.spl.2021.109293